RNA-Seq: DESeq2
library("DESeq2")
library(ggplot2)
dds <- DESeqDataSetFromMatrix(countData = countData,
colData = metaData,
design=~dex, tidy = TRUE)
dds <- DESeq(dds)
res <- results(dds)
head(results(dds, tidy=TRUE))
summary(res)
res <- res[order(res$padj),]
head(res)
workflow
Reference: Analyzing RNA-seq data with DESeq2 (bioconductor.org)
Analyzing RNA-seq data with DESeq2
Standard workflow Note: if you use DESeq2 in published research, please cite: Love, M.I., Huber, W., Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15:550. 10.1186/s13059-014-0550-8 Other
bioconductor.org
'Bioinformatics - 유전체 데이터 분석' 카테고리의 다른 글
Human to mouse gene (R, biomaRt) (0) | 2022.02.05 |
---|---|
DAVID (0) | 2022.01.29 |
Genotype vs Phenotype (0) | 2021.09.25 |
Gene mapping (0) | 2021.09.19 |
Alignment (0) | 2021.09.18 |